Swept Pazy Wing Analyses

Bar Revivo and Daniella Raveh Technion - IIT AePW/LDWG July meeting 18/7/24

Why a swept very flexible wing?

- The modes of the undeformed straight wing were uncoupled and became coupled as the wings deformed. In swept wings, there is bending-torsion coupling even in the undeformed shape.
 - How does this coupling impact the deformation of a very flexible wing?
 - How does it affect the mode shape?
 - How does it affect flutter?
- In the straight Pazy wing, strip theory aero model performed well. This might not be the case in swept deformed wing.
- High-sweep angle wings might not reach large deformations do we still need to use nonlinear structural models?

In the Presentation

- Structural model
- Natural frequencies and mode shapes of the undeformed / deformed swept wings
- Linear flutter analysis of **undeformed** swept wings (0 deg. AoA)
- Nonlinear flutter analysis of **deformed** swept wings (0-10 deg. AoA)
- Static deformations and aerodynamic model
- Very preliminary observations and conclusions

Swept Structural Model

• The straight and swept models have the same length and a different span

Modes of Swept Wings – Undeformed

Table 1	Natural frequencies o	f wings of different	t sweep angles: Zero	loading
			······································	

	$\lambda = 0^{\circ}$	$\lambda = 20^{\circ}$	$\lambda = 30^{\circ}$
Mode 1	4.2(Hz)	4.2(Hz)	4.2(Hz)
Mode 2	28.2(Hz)	27.7(Hz)	27.3(Hz)
Mode 3	40.4(Hz)	43.3(Hz)	46.6(Hz)

- The first and second natural frequencies are independent of sweep
- The swept-wing modes are coupled
- How do the modes vary under load?

OOP bending, torsion, and IP bending components of the first three **curvature modes** of the straight and swept wings; **Zero loading**.

Deformed Wings' Frequencies

Variation of the first three eigenfrequencies with wing deformation (Nastran nonlinear)

Similar frequency trends of the straight and swept wings (when normalized by length not span).

Deformed Wings' Modes

- In the swept wings , the mode shapes vary continuously and stay coupled.
- How does it affect flutter?

Flutter of Swept Wings – Undeformed

 $\omega - V - g$ plots of the undeformed wings (Nastran PK method)

- No hump flutter mode in the swept wings
- The first flutter onset in the swept wings occurs at higher speeds

Deformed Wing Flutter

 $\omega - V - g$ plots of deformed wings (different AoA; MRM)

- The hump mode mechanism is still apparent at low-sweep wings, but it is stable.
- The flutter velocity reduces significantly with deformation, especially in the low sweep angle wings.
- Harder flutter mechanism in the swept wings

Static Deformations With Strip Theory

- MRM static ae analysis is based on strip theory
- Lift line slope from panel analysis of the undeformed wing
- Yields good results for the straight wing

• The aerodynamic model might have a greater impact in swept wings than in the straight wing.

Observations and Conclusions

- Under load, the coupled modes of swept wings vary but there is no switching of bending and torsion (as in the straight wing)
- The hump flutter mechanism is stable in all swept wings. The first flutter onset is at higher speeds.
- The flutter velocity changes with deformation, more so for the wings of low sweep angle
- The aerodynamic model might have a greated impact on the results

